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The Ising model on a two-dimensional Penrose tiling is studied by means of the 
Migdal-Kadanoff scheme. This approximate renormalization method closely 
follows the inflation rules of the tiling, which are easily described in terms of 
Robinson triangles, and lead to the consideration of four types of nearest 
neighbor couplings. The ferromagnetic phase transition is similar to the usual 
one encountered on periodic lattices. When the couplings have both signs, the 
presence of frustration without randomness yields a fairly intricate phase 
diagram, essentially made up of two regions with a very complicated border. 
Region I consists of "quasiferromagnetic" models, which exhibit long-range 
order below some finite critical temperature. The models of region tI are 
paramagnetic at nonzero (low) temperature, but may become ordered (reen- 
trant phases) in a higher temperature range. 

KEY WORDS: Quasicrystals; real-space renormalization; Ising model; 
frustration; phase transitions; reentrant phases. 

1. I N T R O D U C T I O N  

The  d iscovery  of quas ic rys ta l s  I1) s ta r ted  a n  in tense  theore t ica l  activity.  (2~ 
M u c h  of this act ivi ty  is devo ted  to the s tudy  of the s t ruc tu re  a n d  

c r i s t a l log raphy  of these new phases.  O t h e r  s tudies  conce rn  their  s tabi l i ty ,  
e l e m e n t a r y  exci ta t ions ,  etc. In  this p a p e r  we inves t iga te  the m a g n e t i c  
p roper t i es  of quas icrys ta ls .  

Quas i l a t t i ces  are the rea l i za t ion  of quas ipe r iod i c  objects  in  two or  
three d imens ions .  In  the s ame  way as the w e l l - k n o w n  o n e - d i m e n s i o n a l  
i n c o m m e n s u r a t e  s t ruc tures  have  at least  two per iods  in c o m p e t i t i o n ,  the 
Pen rose  lattice,  ~  for ins tance ,  is descr ibed  by  five i n c o m m e n s u r a t e  periods.  

~ Service de Physique du Solide et de R6sonance Magn6tique, CEN-Saclay, 91191 Gif-sur- 
Yvette Cedex, France. 

2 Service de Physique Th6orique, CEN-Sactay, 91191 Gif-sur-Yvette Cedex, France. 

777 

0022-4715/86/1200 0777505.00/0 ~) 1986 Plenum Publishing Corporation 



778 Godreche, Luck, and Orland 

This is clearly shown by the projection method. ~4 7~ Hence, those structures 
are intermediate between periodic systems and random ones, and, 
generalizing the case of incommensurate structures, they are geometrically 
frustrated objects. 

Another kind of frustration is met in magnetic systems./8~ Frustration 
is responsible for unusual properties in random magnetic models, such as 
spin glasses. Its effects have also been studied in the case of hierarchical 
nonrandom systems. (9'1~ It is thus tempting, apart from the direct physical 
interest of the problem, to study the effects of frustration without disorder 
on a quasiperiodic system. 

Let us consider the Ising model on a 2D Penrose tiling. This tiling is a 
generic example of a quasicrystal. The Hamiltonian of the system reads 

~ =  -- ~ Ji jSiSi  (1.1) 
</,j> 

where <4 j> are nearest neighbors, and S i=  • are spins located on the 
vertices of the tiling. The magnetic interactions between the atoms are 
described by coupling constants Jij. Their values are given by geometrical 
rules described below. Since the locations of points of the lattice are 
quasiperiodic, the connectivities and coupling constants are quasiperiodic, 
too .  

The aim of the present paper is to study the properties (phase 
diagram, critical temperatures, etc.) of this model. Since an analytical 
approach seems very difficult (it is already the case for simpler linear 
problems, such as phonon spectra) we choose to use an appropriate kind 
of real-space renormalization group method. 

In Section 2, we describe the model and its basic properties. We con- 
sider here the Penrose tiling obtained with Robinson trianglesJ 1''12) These 
tiles are well fitted to 'describe simply the inflation/deflation (or 
decomposition/composition) properties of the tiling. We will indeed rely 
heavily upon these geometrical self-similarity properties in order to define 
in a natural and minimal way the coupling constants J~j and to renormalize 
the system. The Migdal-Kadanoff (~3'~4) scheme is the natural method to 
use in our case, since it follows exactly the geometry of the tiling. In par- 
ticular, the renormalization is done in two steps, using two types of blocks. 

In Section3 we study the physical properties of the model 
(ferromagnetic transition, phase diagram at zero and finite temperature). 
The Migdal Kadanoff method leads to a mapping in four variables, which 
exhibits a rich variety of phases. In the frustrated region (when some of the 
couplings are negative), infinitely many ordered (quasiferromagnetic) 
phases are present, with possible reentrant behavior. The ferromagnetic 
transition, and in particular its critical behavior, is expected to be similar 
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to that encountered in a regular lattice. Indeed, critical properties of the 
two-dimensional Ising model are determined by the low-frequency behavior 
of the Laplacian operator on the lattice, which should be a priori fairly 
similar to the periodic case. 

This work is a continuation of previous studies by the authors: in 
Ref. 15 a one-dimensional Ising model in a quasiperiodic magnetic field was 
studied. It exhibits an infinity of modulated phases at zero temperature (see 
also Refs. 16 and 17). In Ref. 18 the same geometrical properties as in the 
present paper were used, but another approximate renormalization scheme, 
namely the cumulant method, ~19) was chosen, and spins were put on the 
dual lattice. The intricacy of the eight-dimensional mapping that emerges 
from that method led us to the present work. 

2. T H E  M O D E L :  R E N O R M A L I Z A T I O N  A N D  
BASIC P R O P E R T I E S  

2.1. Penrose Ti l ing w i t h  Robinson Tr iangles  

The Penrose tiling mentioned in the introduction is usually described 
as being made of darts and kites, or of two species of rhombs. The latter 
form appears naturally in the projection algorithm, ~4'7) the rhombs being 
the projections of the two-faces of the original five-dimensional hypercubic 
lattice. If one cuts these polygons in a particular way, one obtains two 
types of triangles, P and Q (see Fig. 1 ), which were first considered by 
Robinson./~1'12) They will be referred to as A-tiles. The A-tiling is subject to 
the following two matching rules: 

1. Each vertex of a triangle carries a color (black or white). Each 
edge of a triangle must be abutted by the edge of another one in such a 
way that the colors of the vertices match. 

2. In the case of a monochromatic edge (joining two vertices of the 
same color), the smaller angle of one triangle must abut the smaller angle 
of the other. This is equivalent to saying that each monochromatic edge is 
oriented, and the orientations of monochromatic edges of adjacent tiles 
must match. 

Let us now describe the exact inflation rules of this tiling. The A-tiles 
can be composed to form new tiles (see Fig. 1). Composing P and Q gives 
the triangle rQ', which is deduced from Q by expanding by a linear factor 
and reversing the vertex colors. Thus, there are two basic Robinson tilings 
with triangles, denoted A and B. 

The A-tiling is made of a larger triangle P and a smaller triangle Q. In 
the B-tiling, the triangle P has become the smaller one, while the larger 



triangle is rQ'. Similarly, the composition of P and zQ' forms the triangle 
rP'. Consequently there is a third tiling, denoted rA', consisting of triangles 
rP'.and rQ', which is isomorphic (similar) to A, since both triangles are 
expanded by a factor r, and have their colors reversed. We may proceed 
further: by composition, the zA'-tiles lead to rB'-tiles, which lead to 
r2A-tiles. Let us summarize the successive steps: 

(a) P + Q ~ r Q '  

(b) r Q ' + P ~ r P '  

(c) rP' + zQ'--* r2Q 

(d) ~.2Q _1_ "cp' ~ 772P 

A(P, Q) ~ B(zQ', P) 

B(rQ', P) --* zA'(zP', zQ') 

"cA'('cP', rQ') --* zB'('r2Q, -cP') 

rB'(r2Q, rP') ~ "r2A(rRP, r2Q) 

(2.1) 

Fig. 1. 

1 

"r 

TO.' 

Robinson triangles 

rP' 

and their composition rules. Angles 
= (x/5 + l )/2 is the golden mean. 
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are in units of n/5; 
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In the parentheses the larger tile that appears in the tiling is always written 
in the first place. The important point for what follows is that, at each step 
of the composition (deflation) process, the edges and vertices that are 
deleted are all contained in a particular type of polygon (see Fig. 2). For 
steps (a) and (c), the compositions take place in a rhomb, while they occur 
in a kite for steps (b) and (d). Figure 3 shows the different composition 
steps on a finite sample of the tiling. 

+ = + T & '  

(A) (B) 

(B) (TA') 

(TA') ('rB') 

(TB') (-rZA) 

Fig. 2. The four steps of the composition (deflation) procedure [see Eq. (2.1)], showing the 
rhombs and kites where the elementary compositions take place. 
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A(P,E) 
(a) 

B(TOL',P) 
(b) 

~A'(TP','~O.') 
(~) 

I 

v, 

TB'(T2[1,Tp ') T2A(x2p,T20,) 
(d) (e) 

Fig. 3. Finite sample of the Robinson tiling at different steps of the deflation procedure [see 
Eq. (2.1)]. The shaded areas correspond to the polygons where the next composition step is 
going to occur. (This figure is a modified version of a figure of Ref. 12.) 

2.2. The  Ising M o d e l  and Its R e n o r m a l i z a t i o n  

W e  now define an Ising mode l  on the Rob inson  ti l ing and  s tudy its 
p roper t ies  by means  of the M i g d a l - K a d a n o f f  ~13'~4) scheme. This rea l -space  
r enorma l i za t ion  m e t h o d  consists  in mov ing  bonds  (i.e., edges)  of the 
or iginal  la t t ice in such a way tha t  the spins can be recursively t raced  out,  
yielding an a p p r o x i m a t e  so lu t ion  of the model .  I t  seems na tu ra l  in the 
present  s i tua t ion  to require  tha t  the b o n d - m o v i n g  p rocedure  fit the com- 
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position rules described in Section 2.1. This condition can be consistently 
fulfilled if the exchange couplings Jo of the Hamiltonian (1.1) are defined in 
the following geometrical way. In the tilings A, B,..., z2A, the lengths of the 
edges are 1, r, z 2, ~3. To these sizes we associate the couplings K, L, M, N, 
respectively. Moreover, we attach to each of these couplings a subscript 
equal to the number of white vertices at the ends of the corresponding 
bond. For instance, one finds the couplings KI, Lx, Lo around a triangle P, 
and L1, K1, K2 around a triangle Q. Figure 4 represents the couplings of 
the three pairs of triangles at different scales 1, z, r 2. This shows how the 
bonds are transformed by composition (deflation) 

K1 

K1 ---~ L1 --'Mx 

K 2 ~  Lo - - * M 2  

Lo ~ M2 --~ No 

L1 ~ M1 --~ NI 

L~ 

(2.2) 

L1 

M1 

N1 

M1 

Fig. 4. Geometrical definition of the coupling constants K 1,..., N1 of our Ising model. Letters 
and subscripts correspond to bond lengths and numbers of white vertices, respectively (see 
text). 
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As was mentioned at the end of last subsection, the composition of 
triangles always occurs in a certain type of polygon. For each of the four 
steps of a composition cycle [see Eq. (2.1)], a bond-moving can be 
attached to the deflation procedure according to the following principle: 
the bonds that are moved are those that disappear in the composition step 
under consideration. Let us illustrate this on step (a): P + Q--+ zQ'. Two 
bonds and one vertex disappear in each rhomb. They both have a coupling 
K1. We choose to move one bond K1 onto K2, the other one onto L1. After 
composition (renormalization), the new bond is M1. Summing on the 
initial central spin determines the value of MI, as well as a contribution A 
to the free energy; Fig. 5 illustrates the procedure. The central spin a is 
coupled to the spin Sc through Kc = K I - } - K  2, and to SR through KR = 
K 1 q - L  1. The unknowns M1 and A must obey the identity (SL, SR = _+1) 

A exp(flMl SLSR) = ~ expl-/~(KL SL + KRSR ) a] (2.3) 
f f  

which easily leads to 

exp(2/~KL) exp(2/~KR) + 1 
exp(2/3M~ ) = (2.4a) 

exp(2/3Kc) + exp(2/~KR) 

SL~  SR 

Fig. 5. 

SL @ SR 

An elementary bond-moving procedure corresponding to step (a): P + Q ~ zQ'. The 
renormalized coupling constant M~ is determined by the identity (2.3). 
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or equivalently 

and 

tanh(/~Ml) = tanh(/~KL) tanh(/3KR) 

785 

(2.4b) 

A 2 = 4 cosh(/~KL + ]~KR) cosh(/JKL -/3KR) (2.4c) 

The three other steps are dealt with in an analogous way. The full 
renormalization transformation reads 

(a) tanh(/JM~ ) = tanh(/~K, + ilK2) tanh(flK~ + ilL, ) 

(b) tanh(/5'M2) = tanh(flK1 +/3Lo) tanh(/~Lo + flL 1) 

(c) tanh(/~N1) = tanh(flLo +/3L1) tanh(/~Ll +tiM1) 

(d) tanh(/~No) = tanh(/~L~ +/?M2) tanh(/3M~ +/~M2) 

(2.5) 

t, = tanh(/3Ji) (2.8) 

J1 = K1 ; J2 = K2 ; 

and the dimensionless variables 

xi = exp(2flJi); 

J3 = L 0 ;  J4=LI  (2.7) 

describing the renormalization of the A-tiling into the rA'-tiling. 
This property could indeed be expected, since the geometrical transfor- 

mation A --, TA', which amounts to a dilatation of a factor z and a reversal 
of the colors of vertices, when squared, leads to the full transformation 
A --* "c2A. 

We introduce the following convenient notation of the couplings: 

K 1 - - ~ L  1 

K 2  --~ Lo 
Y:  (2.6) 

L o -~ M 2 

L1 ~ M1 

This transformation can actually be studied by using only the first two 
equations, or equivalently by considering only steps (a) and (b), transform- 
ing tiling A into rA'. It can indeed be checked that the full transformation 
(2.2) is nothing else than the square ( Y  o J )  of the mapping 



786 Godr~che, Luck, and Orland 

In terms of xi, the 
assumes a simple rational form: 

! 
X 1 = X  4 

t 
X 2 = X 3 

y :  , x lx2x4 + 1 (2.9) 
X3- - -  

x3(xl + x 4 )  

x~x2x4 + 1 
t 

X 4 ~- 
X l ( X  2 --~ X 4 )  

while the contributions A and B of steps (a) and (b) to the free energy (see 
next subsection) are given by 

A Z = x I ( x 2 + x 4 ) [ 1  +(X2XzX4) 1] 
(2.1o) 

B 2 = X 3 ( X  1 _1_ X 4 ) [  1 + ( X l X ~ X 4 )  1]  

The transformation Y has a remarkable property that renor- 
realization maps usually do not have. J -  is invertible, and its inverse map 
y - 1  is also rational in its four arguments: 

t ! ! 1 X l X 2 X  3 - -  
z 

X1 Xt2 ( X'l X~2 __ X~3 ) 

x '~ ( x'~ x l - x;) x l x '4 ( x'~ x '~ x ;  - 1 ) - x '~ ( x'~ x '~ - x ; ) 
x 2 -  , . . . . . . . . . .  (2.11) 

~ -  1: X l X 2 X  3 -  1 X l ( X l X 2 X 3  - 1 ) - - X 2 X 4 ( X l X 2 - - X t 3 )  

! 

X 3 ~ X 2 

X 4 ~ X~l 

This inverse transformation has nevertheless a considerable drawback: 
the iteration of Y - 1 ,  starting from generic physical values of the xi, leads 
to negative values of some of these variables, which cannot be interpreted 
in terms of physical coupling constants. 

In terms of the ti [see Eq. (2.8)], which are nothing else than the dual 
variables of x71 [ti = ( x i -  1 )/(xi + 1)], the transformation Y also assumes 
a simple rational expression: 

mapping J -  we shall use throughout the following 

t~l = t 4 

t~ = t 3 

t l +  t3 t3 + t4 (2.12) Y:  t; - - -  
t l t 3 + l  t3t4+ 1 

t 1 q- t 2 t l  -1- t 4 
t 4 = -  

t i t 2 + 1  t i t 4+  1 
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2 .3 .  T h e  F r e e  E n e r g y  

We now derive an expression for the free energy per site F(fi) of the 
model. Consider a very large but finite sample of the Robinson A-tiling 
having N sites. Since all the facets of the tiling are triangles, it can be easily 
derived that the sample has 3N bonds and 2N facets (up to boundary con- 
tributions that we shall not consider hereafter, dealing only with ther- 
modynamic quantities). Since the P triangles are z times more numerous 
than the Q triangles, their numbers read Np -- 277 IN; N o = 277 aN. In step 

! N  2 N (a) of the deflation procedure, P + Q --+ rQ' ,  we trace out 2 0 = 77 spins 
in rhombs. Hence we collect 77 2N factors A and are left with N o, = 277 2N 
and N p = 2 r - 3 N  triangles, building the B-tiling. Similarly in step (b), 
P + 77Q' --+ rP' ,  we trace out �89 = 77 3N spins in kites, we collect 77 3N fac- 
tors B, and are left with Np, = 2 z - 3 N  and NQ, = 277-4N triangles, building 
the ,A'-tiling. The partition functions Z and Z '  of the tilings A and rA'  are 
therefore related through 

Z = A*-2NB ~ ~NZ' (2.13) 

and the free energy F per site obeys the functional equation 

flF(xi) = 77 2 [ f l F ( J ( x i )  ) - D(xi)]  (2.14) 

with 

D(xi)  = In A(xi )  + 77 1 In B(xi)  (2.15) 

By iterating Eq. (2.14), we obtain the following representation of the 
free energy in terms of all iterates of the renormalization mapping ~-: 

flF(xi) = - Z 77 - 2 ( n +  1)D[g,,(x,) ] ( 2 . 1 6 )  

n~>o 

This expression is only a formal solution of the model, since it involves the 
whole orbit Y n ( x i )  by the renormalization transform .Y-- of the initial con- 
ditions x i. We shall see hereafter that this orbit may be very complicated as 
soon as some frustration is present in the model, i.e., if at least one of the 
exchange couplings Ji is negative. In Section 3 we shall discuss and 
illustrate several features of the model, both at zero and finite temperature, 
showing how a "simple" rational map in four variables can lead to 
extremely intricate outcomes. 
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2.4. Zero-Temperature Renormalization and 
Ground-State Energy 

The renormalization mapping Y assumes an even simpler (piecewise 
linear) form J0 at zero temperature, in terms of the couplings Ji. Indeed, 
the fl ~ ~ limit of Eq. (2.9) reads 

J'l = '-/4 

J2 = J3 
J0: (2.17) 

J ;  = �89 J1 + 2J3 + J 4 [  - ] J ,  - J41) 

J~ = �89 + Jz + J4[ - ]J2 - J41) 

This expression is easily deduced from Eq. (2.9) by keeping track of 
the leading powers of e #. 

The transformation Jo is not invertible, since the inverse of 3- given in 
Eq. (2.11) does not have a well-defined zero-temperature limit. 

An analogous simplification occurs in the expression (2.16) of the free 
energy. Namely the ground-state energy per site E o = limp ~ ~ F(fi) is given 
by 

Eo(J,) = - 2 ~-2(,,+ ~)Do[Y-~(Ji)J (2.18) 
n~>0 

with 

Do(Ji)=k(12J, + Jz+J4]  + ]J2-J4])+�89 '([J1 +2J3 +J4[ + ] J1 - J4 ] )  

(2.19) 

This expression always leads to a negative value for Eo, as it should, since 
the internal energy vanishes by definition at infinite temperature. 

For  ferromagnetic models (Ji all positive), it can be checked that 
Eq. (2.18) leads to 

- E o  = J1 -~- T - Z J  2 + V 1J 3 G- J4 (2.20) 

Since all interactions are satisfied at T = 0  in these models, Eq. (2.20) 
means that, among the 3N bonds of a sample having N sites, the numbers 
of bonds of each type discussed in Section 2.2 read asymptotically N, z-2N, 
z - IN,  and N, respectively. These frequencies can indeed be derived 
geometrically, just as we did for the triangles at the beginning of the last 
subsection. They can also be obtained through the composition rules them- 
selves. Indeed the numbers of bonds Ni (1 ~<i~<4) of a finite sample of 
A-tiling and N; of the same sample of zA'-tiling obtained after steps (a) 
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and (b) of the deflation procedure  are related th rough  the following linear 
equations:  

N2 0 0 0 1 N;  

N3 0 1 2 N3 

N~ 1 0 1 N~ 

(2.21) 

which are a direct consequence of the compos i t ion  rules (2.1). This matr ix  
has eigenvalues + 1  and r -+2. The leading eigenvalue is r2, as expected, 
because the inflation rules imply a dilation by a linear factor  of  r. The  
associated eigenvector  is (1; ~-2;  r -~ ;  1): its componen t s  are p ropor t iona l  
to the frequencies we have just  described, since the iterates of  any initial 
values of Ni after a large n u m b e r  of inflation steps will be p ropor t iona l  to 
the componen t s  of the leading eigenvector.  

3. PHYSICAL PROPERTIES 

3.1. The Ferromagnetic Transition 

We first consider  the case where the exchange couplings Ji  are all 
positive. As expected, we find a single cont inuous  phase  transition. More  
precisely, at high t empera tu re  the variables xi are a t t rac ted  by the 
paramagnetic ( inf ini te- temperature)  fixed point  x l =  ' . .  = x 4 = l  , while 
they flow at low tempera tu re  toward  the ferromagnetic (zero- tempera ture)  
fixed point  x 1 = . . .  = x4 = +o r .  These two regimes are separa ted  by a 
critical t empera tu re  T,., which smooth ly  depends on the couplings J~. The  
associated variables xi flow toward  the unstable  fixed point  xl . . . . .  
x4 = x*, where x* = 1.839287 is the real solut ion of x 3 - x 2 - x - 1 = 0. This 
unique, nontr ivial  fixed point  has a r emarkab le  proper ty :  it is " isotropic,"  
i.e., all the variables x~ are equal. Hence,  it coincides with the fixed point  of 
the usual Migdal  K a d a n o f f  t r ans format ion  on a t r iangular  (or square)  lat- 
tice: 

x 4 +  1 
" (3.1) ~reg" X -~ 2X 2 

since this m a p p i n g  is identical to the last two lines of ours  [see Eq. (2.9)] if 
all the x i are given a c o m m o n  value x. 

For  " isotropic"  models  ( J i =  1) on t r iangular  and square lattices, the 
exact values of tic read 

/~c( & ) = �88 In 3 = 0.274653 
(3.2a) 

tic( [] ) = �89 ln (x f2  + 1 ) = 0.440687 
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while the Migdal-Kadanoff  scheme [Eq. (3.1)] leads to the s a m e  predic- 
tion in both cases 

/3c(MK ) = �89 In x* = 0.304689 (3.2b) 

We therefore find it hard to believe too seriously the prediction of our 
approach for the critical point of the model J~= 1, which is also given by 
Eq.(3.2b). Some preliminary Monte Carlo results concerning the 
ferromagnetic Ising model on a slightly different Penrose tiling suggest, 
however, that the critical temperature should not be very different from 
that of a triangular lattice. 

The linearization of the mapping Y around its fixed point x i =  x* 
allows one to compute the thermal critical exponent v through 

v = in r/ln # (3.3) 

where r is the dilatation ratio of our renormalization scheme, while/~ is the 
largest eigenvalue of the Jacobian matrix J (~ )=0x ; /0x j )  evaluated at 
x i = x*. We find p = 1.401482, and hence v = 1.425686. It is clear that this 
numerical value cannot either be taken too seriously. Let us recall that the 
usual Migdal-Kadanoff  procedure [Eq.(3 .1)]  for regular lattices 
(dilatation factor b = 2 )  leads to a value v=  1.338262. We are led by 
physical reasons to expect that the critical behavior of the usual Ising 
model, and in particular the value v = 1, is no t  modified by the lack of 
periodicity of Penrose tilings (see introduction). It will be clear in the 
following that the ferromagnetic transition is by far not the most 
interesting outcome of our approach. 

The singular part of the free energy (2.16) around the critical tem- 
perature has the form 

Fsg ~ I T -  T~.I 2" (3.4a) 

(since the exponent :~ equals 2 -  2v). Hence the specific heat 

C = - f1202( f lF) /O~ 2 (3.4b) 

is continuous, but has an infinite slope, at Tc. Figure 6 shows a plot of C 
against temperature for the "isotropic" model with Ji = 1. This curve will be 
compared in the following with analogous plots for frustrated models. 

3.2. Z e r o - T e m p e r a t u r e  Phase D iagram 

We have seen that the renormalization transformation assumes a sim- 
ple piecewise linear form go [see Eq. (2.17)] at zero temperature. This 
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1.0  I r I I 
C I T c  

0.8 

0.6 

0.~ 

0.2 

o i i 1 T 
2 4 6 8 10 

Fig. 6. Plot of the specific heat of the "isotropic" ferromagnetic model against temperature. 
The critical singularity at T~- 3.2820 is very clearly visible. 

apparently simple transform nevertheless leads to a very rich and intricate 
behavior. A model is given by its four coupling constants J~, i.e., by a 
representative point in the four-dimensional J-space. The zero-temperature 
properties do not depend on the global scale of the J:: in particular, the 
mapping J0 is a homogeneous function, as it should be. 

The space of all possible models can be divided into two regions, 
according to their zero-temperature properties, in close connection with the 
asymptotic behavior of the orbit Y~(J~) at large n. 

I. Quasiferromagnetic region. If the iterates Y~(Ji) diverge to 
infinity as the generation label n gets large, then the model presents long- 
range order at zero temperature, which persists as long as temperature is 
lower than some.finite critical value T,(Ji). The prototypes of this class of 
models are the ferromagnetic ones, for which the action of Y0 reads (except 
maybe at the very first steps) 

( oo t J2 = 0 1 J2 

J~ 0 1 J3 

J~ 1 1 0 0 J4 / 

(3.5) 

The four couplings J-~(J:) therefore diverge as 2", where 7 = 1.512876 is the 
leading eigenvalue of the matrix appearing in Eq. (3.5). Usual renor- 

822/45/5-6-2 
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malization schemes for models on regular lattices satisfy 2 = b D 1 (where b 
is the dilatation scale and D the dimension). We interpret the fact that 2 is 
(slightly) different from r in the present case as being a (harmless) 
pathology of our approximate solution. 

More generally, since each model of the ordered region falls after a 
finite number n o of renormalization steps onto the limit map (3.5), the 
long-range order it exhibits is characterized by a modulation of the order 
parameter up to a maximal scale ~n0. This type of order, which generalizes 
to aperiodic systems the antiferromagnetic order, or the modulated order 
encountered, e.g., in ANNNI models, can be named quasiferromagnetism. 
This phenomenon is already present in the 1D Ising model in a 
quasicrystalline magnetic field.~15) 

II. "Disordered" region. This region is defined as being the com- 
plement of the previous one, i.e., the set of models such that the orbit of 
couplings Y~(Ji) does not go to infinity. This negative definition embraces 
quite a variety of different behaviors. This region is nevertheless essentially 
made up of two types of models: 

IIa. Models such that 3--~(Ji) vanish identically for n larger than 
s o m e  ~0. 

IIb. Models such that f~(Ji) lie exactly on a two-cycle of the form 

(a; 0; 0; O) ~ (0; 0; 0; a) (3.6) 

for n larger than some n o. The positive number a varies continuously with 
the couplings Ji inside region IIb. 

We have determined the relative weights of regions I, IIa, and IIb as 
follows. Since the transformation J0 is homogeneous in the four variables 
Ji, the regions we have defined are cones extending to infinity in the 
J-space. A convenient way of dividing out this infinity is to restrict oneself 
to models such that y4= 1 j2 = 1, i.e., to look at the unit sphere $3 of the 
J-space. The weights of the different regions are now well-defined as being 
the measure of their intersection with $3 (the measure being the usual 
isotropic one). By sampling $3 with a large number of random, 
isotropically distributed values of Ji, we have obtained rather accurate 
numerical values of the measure of the different regions of the phase 
diagram: 

I: 92.6% II: 7.4% (IIa: 2 . 6 % ; I i b : 4 . 8 % )  (3.7) 

The models that lead to a more complicated orbit than the simple 
kinds of behavior I, IIa, or IIb therefore seem to build a set of zero 
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measure that can be viewed as the boundaries separating those three 
regions. 

The models of types IIa  and IIb, which form the bulk of the "disor- 
dered" region, become paramagnetic at any small but nonzero temperature. 
They may nevertheless exhibit some "exotic" kind of long-range order at 
zero temperature, e.g., a spin modulat ion which is incommensurate with the 
Penrose tiling, or a topological X - Y  type order, etc. These cases (if any), 
which do not belong to our definition of quasiferromagnetic order, are 
more subtle phenomena that our bond-moving procedure cannot describe 
accurately. The name "disordered" that we have attached to region II for 
simplicity therefore fully deserves its quotation marks. Moreover,  models of 
regions I Ia  and IIb may develop quasiferromagnetic long-range order at 
higher temperature through a reentrant phenomenon to be discussed later. 

Let us illustrate how intricate the division of the J-space into regions ! 
and II can be, by showing a few sections (this is indeed the best one can 
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Fig. 7. Zero-temperature phase diagram in the (Jl, J3) plane (]2 and J4 are kept equal to 
+ 1 ). White and dark areas correspond to regions I and lI, respectively (see text)�9 
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hope to do when dealing with a four-dimensional space). In each of these 
plots, two couplings are kept fixed, equal to + 1, while the two others are 
varied and used as coordinates. White areas correspond to region I 
(quasiferromagnetic models); dark areas to region II. Figures 7 and 8 show 
the (J, ,  J 3 )  and (J2, J4) planes, respectively. Figure 9 is a rather esthetic 
enlargement of Fig. 7. We may have missed much more appealing details of 
the division of J-space according to zero-temperature behavior; we hope 
nevertheless to have shown convincingly that the phase diagram we get is 
fairly complicated. 

3.3. Finite-Temperature Phase Diagram 

In this subsection we aim to capture some features of the frustrated 
models at finite temperature. We have seen that most models (region I) 
exhibit quasiferromagnetic order at T = 0 ,  while some do not (region II). 
These two regions interpenetrate in a very intricate fashion. We shall now 
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(2 :.::::::N',,ri, 
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i ~  t 
L ! 
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Fig. 8. Same as Fig. 7, in the (Jz, J4) plane (Ji and J3 are kept equal to + 1). 
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Enla rgement  of the central  par t  of Fig. 7. 

describe how this zero-temperature picture is modified when thermal fluc- 
tuations are taken into account. 

In analogy with the zero-temperature properties discussed in the last 
subsection, we have explored the five-dimensional (J, T) space along some 
sections. Figures 10 and 11 show plots of the phase diagram when one 
combination of the couplings Ji and temperature are simultaneously varied: 
the abscissa reads J=J3=J4 (with J1 =J2  = +1) for Fig. 10; J=Jl = J 3  

(with J2 = J4 = + 1) for Fig. 11; the ordinate is just T. White areas corres- 
pond to disordered phases with paramagnetic behavior (variables x i attrac- 
ted by the infinite-temperature fixed point), while dark areas correspond to 
long-range quasiferromagnetic order [i.e., Yn(xi)-- ,  +oc ]. The boundaries 
between both kinds of domains are just sections of the critical surface 
T,(Ji). The essential new feature that shows up is the existence of reentrant 
phases. A given model may undergo several phase transitions when tem- 
perature is increased. In particular, there are models in region I! that have 
no order as T-~0,  but become ordered between two finite critical tern- 
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Fig. 10. Finite-temperature phase diagram along the section J~ = J 2 =  + 1 ;  J3=J4=J'<O, in 
the (J, T} plane�9 Dark areas correspond to ordered (quasiferromagnetic) phases�9 Arrows 
indicate the models for which specific heat plots are presented in Figs�9 12 14. 
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Fig. 11. Same as Fig. 10, along the section J2 = J4  = Jr 1; J l  = .]'3 = J '~ 0. A series of at least 

three successive reentrant phases can be seen on the right half of the figure. 
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peratures. More generally, the critical surface exhibits a complicated mul- 
tivalued structure, allowing a large variety of sequences of ordered 
(quasiferromagnetic) and disordered (paramagnetic) phases. Around the 
values of T C that demarcate all these phases, the model exhibits 
qualitatively the same critical behavior as in the ferromagnetic region, since 
the associated variables xi always flow toward the fixed point x i = x *  
described in Section 3.1 (this is indeed the unique nontrivial real fixed point 
of the mapping Y).  The critical singularities of the free energy are 
nevertheless generically much less pronounced than in the ferromagnetic 
ca se .  

Let us illustrate the thermal effects of reentrance phenomena present in 
our model by specific heat plots of two typical cases. These plots are to be 
compared with Fig. 6 corresponding to the isotropic ferromagnetic case. 
Figure 12 shows a generic frustrated model (J1 = J :  = + 1; J3 = J4  = - 0 . 9 )  

that does not exhibit reentrant behavior. Rather strikingly, the critical 
singularity is very hardly visible at the scale of the plot, which shows above 
all a large but smooth maximum at T* ~ 2.5T c. Hence, the most important 
rearrangements that occur in the system when temperature is increased are 
not closely related to the disappearance of long-range order, but take place 
at a different energy scale T*. Figures 13 and 14 correspond to a model 
(Jl = J2 = + 1; J3 = J4 = -3 .2)  that exhibits two ordered phases (a normal 
one at low temperature, and a reentrant one) and hence three critical tern- 

03, 

0.3 

03 

0.1 

c Tc _ _  T 

1 2 3 L, 

Fig. 12. Plot of the specific heat of a frustrated model (J~ = J 2  = + 1; J~ = J4 = --0,9) without 
reentrant behavior. The critical singularity (T~ = 0.60592) is hardly visible. 



0+3 - -  I I t I t 

0.2 

0.1 

7 9 8  G o d r ~ c h e ,  L u c k ,  a n d  O r l a n d  

T 
0 I I P I I I 

1 2 3 t~ 5 6 

Fig. 13. Plot  of  the specific hea t  of  a f rus t r a t ed  m o d e l  ( J r  = J 2  = + 1 ;  J 3 = J 4  = - 3 . 2 )  wi th  
two  o rde r ed  phases :  a n o r m a l  one  (0 < T <  TI 1)) a n d  a r e e n t r a n t  one  (TI?) < T <  TI31). 

peratures. Figure 13 shows a global picture of the variations of the specific 
heat; Fig. 14 is an enlargement at low temperature, showing that the reen- 
trance phenomenon leads to a smooth but nonmonotonic temperature 
dependence. The three critical singularities are not visible at that scale. The 
temperature T* where the specific heat is maximal is roughly one order of 
magnitude above the critical temperature! 

Fig. 14. 

0,12S I I I - -  C 
a.1 Tc311 ~ J  
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E n l a r g e m e n t  o f  the  l o w - t e m p e r a t u r e  reg ion  of  Fig. 13, s h o w i n g  the s t ruc tu re  of  C(T) 
a r o u n d  the critical t e m p e r a t u r e s  T(c t) = 0.13121, TI. a) = 0.24644, TI. 31 = 0.66320. 
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4. C O N C L U S I O N  

Through the present study, the Migdal Kadanoff renormalization 
scheme has proven to be a natural method to use in order to study the 
magnetic phase structure on the Penrose lattice, since it follows exactly the 
geometry of the system. Though it has approximate character, this method 
is expected to reflect properties of the Ising model on a real 2D 
quasiperiodic lattice, at least concerning its qualitative behavior. 

The most interesting aspect of the present study is certainly the 
richness of the phase diagram of this Ising model, in particular, the case 
where the couplings have both signs is an interesting example of frustration 
without randomness. The situation is indeed very different from the one on 
a periodic lattice: because of aperiodicity, the unit cell of the quasicrystal 
has an infinity of atoms, and each spin experiences a different environment. 

For most values of its four coupling constants (region I), the model 
exhibits a long-range "quasiferromagnetic" order, characterized by a 
modulation that has the same type of quasiperiodicity as the underlying 
lattice. This order persists up to some finite temperature Tc and may also 
appear again at higher temperature through a reentrant mechanism. This 
situation reminds one of the cases of commensurate modulation met, e.g., 
in ANNNI models. Other types of order (incommensurate, topological, 
etc.), which cannot be attained by our approach, could possibly exist at 
zero temperature in the "disordered" models, for which T C vanishes 
(region II). 

We finally mention that the mere description of the exact ground 
state(s) of the frustrated Ising model on a quasiperiodic tiling remains an 
open difficult question, related to problems found in optimization. Indeed, 
the system exhibits a high level of complexity. 
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